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Iý AjiSrRACT

this Paper shows that there is a firlite set of equivalence
classes for constraints in "lie 0-1 progrdrnming problem. these
equivalencc classes have the property that. exactly the same set
of solutions are feasible f-Or all constraints in the equivalence
class. It is shown that these classes are determined by the rela-
tionship of the constrAint t~o the dulal of the hypercube. A func-
tion that indicates feasibi-lity of 0-1. points is defined and is
shown to be monotone over a vector partial ordering associated Z
with the constraint and paired vertices of the hypercube. This
allows for determination of equivalence classes based on identifying
where the indicator function changes value. A search algorithm
is presented for classifying the constraints and a method is pre-
sented for determining a "best" constraint from the class.
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Constraint Classification On the Unit Hypercube.

Abstract

This paper shows that there is a finite set of equivalence classes

for constraints in the 0-1 programming problem. These equivalence

t •classes have the property that exactly the same set of solutions are

feasible for all constraints in the equivalence class. It is shown that

these classes are determined by the relationship of the constraint to theV dual of the hypercube. A function that indicates feasibility of 0-1 points

is defined and is shown to be monotone over a vector partial ordering associated

with the constraint and paired vertices of the hypercube. This allows for deter-

mination of equivalence classes based on identifying where the indicator function

changes value. A search algorithm is presented for classifying the con-

straints and a method is presented for determining a "best" constraint

from the class.
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I. Preliminaries

?'I

Let us consider two constraints Ea.x! 2 b and La!x! .

where x! = 0, 1 Vi. It is obvious that while a = (a 1 ,..a and

' (a, a) may be outwardly quite differentthey may be redundant

in the sense that the feasible sets for both constraints may be the same.

This then raises the questions of how do we recognize these constraints, I
how many non-redundant c:onstraints exist and how does one construct or -A

choose "best" constraints from a redundant set. Bales and Jeroslow 14) have

approached the first question by the use of canonical constraints. The ques-

tion of choosing "best" constraints has been discussed Kianfar [7] and to some A

degree by Bowman and Nemhauser [6]. This paper addresses itself to all these

questions and provides a means of classifying constraints into equivalence

classes based on their feasible sets and then choosing a "best" constraint

from these sets. In order to facilitate discussion we shall work with

: variableg, x, that have been translated by 1/2e, e = (1,..., 1)' from the

xl space i.e. x1 = x + 1/2e. This translates 0, 1 values of x' into A

-1/2, + 1/2 values of x. Consequently, the origin in the x space is the

center of the hypercube whose vertices are the 0, 1 solutions desired. We

also note that any constraint Ea.x. Ž t;'-l/2Za.. In succeeding discussions
1 j 1

we will be working only in the x space and thus right hand side values of

the constraints will be for those after the translation into the x space, i. e.,

b = b"" i/2na1 .

r2



-2-

Let K denote the unit hypercube, B the minimum ball containing

IK, and C the minimum octahedron containing K, i. e.,

F rxl 1/2 e, !5x !5+ 1/2 e4

n

2° n
B [X (xj i< 4 '

- i=l

C =[xJ 1fxiji~ 1

For a detailed discussion of these sets in relationship to integer pro-

gramming, see [ 1,2,3].

If we denote by bd(C) the boundary of the set C, the vertices

of the hypercube can be deecribed as 1) bd(K)r~bd(B), 2) bd(K)nbd(C)

or 3) bd(B)nbd(C).

We note that the octahedron H is the intersection of 2 n half-

spaces

Z;O.x. n/2 6.+l (1)
21 1

and that these defining hyperplanes are tangent to B at the vertices of

K.

Now consider a hyperplane ax = b intersecting B. If we now

construct all tangent planes to B at the intersection Ea.x. = b we form

a displaced cone with vertex v at the intersection of the normal to

La.x. = b and the tangent hyperplanes i. e., v X a where X
112 4b
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In projective geometry, v is the pole of the polar set ax • b with respect
Ilk-

to the conic B. We shall therefore refer to v as a pole. When referring

N to the pole of a particular constraint ax > b we shall use the notation v

is the pole of (a,b). For other uses of poles and polar sets in integer

PE, programming see [2]. It is the pole v and its relationship to the ex-

tended .facets of C that will determine the equivalence class of a constraint.

We note that if b = 0 ft en X= and the tangent planes form a

hypercylinder (i.e., have, pole at infinity). This occurs only when

ax = b bisects B,. that.lsipasses through the origin, x=0. When b/ 0

z the pole v may lie in either the feasible closed halfspace ax > b called H+

•' or the infeasible open halfspace ax < b called H. One may consider

the problem of choosing a "best" constraint as "pushing" the constraint

away from v when v c H" or "pulling" the constraint towards v when

.• v CH

2. Equivalence Classes

Let us now consider the 2n hyperplanes (1) that are the extended

facets of C. We note that these facets occur in parallel pairs, i.e.,

ZSx.•n/2 (2a)

and 2;(-A.)x. : n/2 (2b)

are parallel. There are obviously 2n- I of these parallel pairs. Every

n
set of the parallel pairs partition R into 3 sectors i. e. , feasible to

(2a) but not (2b), feasible to (2a) and (2b) and feasible to (2b) but not (2a).
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The relationship of the pole of a constraint to the parallel pairs (2a) and

(2b) will be fundamental to the establishment of equivalence classes on

the contraints. In order to discuss pairs we shall need a unique designatoro

for each pair. Let 6 be the unique designator of the parallel pair 6 and

-6. For uniqueness 6 (1,6,...,8n) has the property E 6. 20
12 n

and if L. - 0 then 6 = -1. We now wish to establish an indicator

that relates the feasibility of the pole v of (a, b) to the constraints (za)

and (2b). This function will be defined over the 2e- parallel pairs

denoted by 6.

Let l(v,W) be a function on parallel nairs and v the pole of

(a, b) that exhibits the following properties:

Sif >A
ii 2+

1 if Z6 .v and vCH

0 if 6 .v. = and v CH-

r(v,6) 0 if E n

2 i n

0 if .v and vcH- 11
-- n H+ :

"-I if E•i=n and viii

Iif E 6.V <
A. -2

r(v, •1 describes in which of the three partitions the point v lies. We

thus have the following Lemma.

n
Lemma 1h The extended facets of the octahedron C partition R into

n1
3 qe&inent-s. M

Lit
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n-I
Proof: There are 2 parallel pairs 6 and any point v is mapped into

one of the three possible values under r(v, 8) depending on where v lies

in relation to the partition of Rn by the pair 8. There are 2 such

mappings for a given v..

We now investigate the relationship of the pole v

of the hyperplane ax b, to feasible vertices of K in the halfspace ax. 2b.
JH

Since

the pole v is said to have X for b =0, we extend our definition of

r to include these values.

1 if a8< 0

r(0,) = 0 if a&= 0

-1 if a > 0

Recall that 1/26 and -1/26 are vertices of K, i.e., solutions to our

problem. The following Lemnma relates the feasibility of these vertices

to the function r(v,8).

Lemmna 2: Let ax :b have a pole v then

if b > 0

a) 1/2 is feasible if and only if r(v, 6) = +1

b) -1/26 is feasible if and only if r(v , 8) = -1

if b < 0

c) 1/2 6is ifieasible if and only if r(v, 6) = 1

d) -1/2 &is irfeasible if and only if r(v, 6) = -1

and if b=0

ee) I/Z &s infeasible if and only if r(-, I) = 1 i. e., a 6' 0

f) -1/2 8s infeasible if and only if r(1, 6) = -1 i.e., a3>0
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Proof:

a) Assume I/Z 6 is feasible, then 1/2 6a Z b or multiplying by n-

Swehave 2-a6 2:2 or v! Z 1. Since b>O then v(H+ and thus
4b 2 2

r(v, )=i. Nowlet r(v,Z)= I then v6• - or -- a or
2 4b 2

I/2a6 k b. The proof of(b) is similar.

To prove (c) let 1/2 6 be infeasible then a(1/2 6) < b or multiplying

by - <0 we get ())a 8> - and thus r(v, 6) = 1. Now assume

that r(v,6)= i. Since b <0 then vCH- andwe have ( a)a8 >
4b 2

and consequently 1/2 a6 < b. Again the proof of (d) is similar to that of

(c). To prove (e) assume 1/2 6 is infeasible then a(I/2)8 • 0 or.

a 6 <0. Likewise if a8 <0 then 1/2 aC <0. Again the proof

of (f) is similar to that of (e).

We have thus shown that we can use the location of thepole.

of (a, b)to yield information about feasible and infeasible vertices of K

with respect to ax ZŽ b.

Definition. We say that two constraints (a, b) and (a', b') are in

the same equivalence class E, if the set of feasible vertices of K are

"the same for both (a, b) and (a', b').

We denote (a, b) in equivalence class E by (a, b) CE.

2n-i n-i
Theorem 1. There are (2.3 -2 ) equivalence classes for

constraints in an n-dimensional hypercube.

Proof: From Lemma 2 we can classify opposite points 1/28 and

-1/26 bythe function r. Thus -I,

I5•

_ _ _. ... .. ... ,
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a) 1/2 and -1/2 8 are both feasible if and only if b f 0

and r(v, 1) 0

b) 1/2 8 is feasible and -1/2 8 are infeasible if and only if

1) b 0 a•d r(v, ) =1

or 2) b'O and r(v, 8) =-1

c) 1/2 8 is infeasible and -1/2 6 is feasible if and only if

1) b> 0 and r(v, )=-i

oT 2) b50 and r(v, 6)= 1

d) 1/286 and -1/2 6 are both infeasible if and only if

b> 0 and r(v, 6) 0

We first note that there are 3 values of r(v, 6) for each of the

2n'lparallel pairs 6 and that the feasible sets differ with the sign of b (that is

bf 0 or b > 0). Thus an upper bound on the number of equivalence

classes is 2(3 . However (b) and (c) above indicate that different
13n- I

elements of these 3 ) potential classes are the same. In particular

if r(v, I) = + i then changes of the sign of r and b produce the

2n-1
same equivalence class. Thus, since there are 2 ways of assigaing

+r(v, 8) =±1 for all 8 and 2 ways u." assigning the sign of b, there
is atotlityof (2n-1I + 1)

is a totality of Z of thes .tial classes of which 1/2 are

the same i.e. the change of sign of r and b. Thus from the total

set of potential classes we must subtract those that are redundant. This

yields
n-1 n-I -J-

z e
2(3 )-2 equivalence classes.
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It is obvious that these equivalence classes can be determined by

just observing the values of r and b as outlined in (a) through (d)

of the above proof.

Example 1: Let us consider the possible equivalence classes in a two

dimensional space. There are four vertices of K which we denote

U, X, Y, Z. We let U'= (-1/2, -1/2), X = (1/2$ 1/2), Y = (-1/2, 1/2)

and Z = (1/2, -1/2) thus these correspond to the following 0-1 points

before translation of axiks. U'= (0, 0), X'= (1, 1), YI= (0, 1) and Z,= (1, 0).

Let =(1, 1) and = (-1, 1) then U, X represent the vertices

classifiable by r(v6 ), and Y and Z the vertices classifiable by

r(v, 6 2 ). The number of possible equivalence classes is determined from

Theorem 1. There are = 2 pairs of vertices and thus 2- 3 -2 = 14

possible equivalence classes. These are as follows

-l -
b r(v, 61) r(v, 1 feasible vertices

1) £0 0 0 U, x, Y, Z

2) '0 0 -1 U, X, Y
3) 0 0 1 x, zU11
4) :50 -1 0 X, Z, Y

5) '0 1 0 U, Z, Y

61 ~>01

6) >(0 - 1 - •

"I) 0 0 - 1

7) 0 J(X, Z M
>0 0 1;

8).> jU, Y}

>0 -l I1Z

10) > 0 0 0 none
11) >0 0 .1 Z F

12) >0 0 1 Y

13) >0 -1 0 U

14) >o0 0 x

L -- _
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One should note that the number of equi-valece classes grows quite

rapidly as shown below
I I

ni 2 3. 45

Equivalence classes- 14 '146 12866 86,027,906

While we have been able to classify constraints into equivalence

classes by Theoriem 1, for any given constraint we must c~lculate 2s' i
functions r(x, 6) to determine this clasdification. Although this is not

equivalent to enumerating all of the vertices of the hypercube, it is
2 1

equivalent to enumerating half of the vertices. In thb next section we

A investigate a partial ordering that exists on the extended facets of C

Sand from this derive an efficient search algorithm f9r determ ining the '

appropriate equivalence class. In addition tl~is partial or4eringsuggesto

a simple method of deriving other constraints ti e equivalence clads

that are "better". , " .I .

SI

I 1-

SI *I
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3. Calculations of I(. .)

If we observe that the hypercube may be rotated and the axes

relabeled we can assume without loss of generality that ax kb has the

property 0 !a9 a 2  ... a an. Since the C for paired hyperpianes has

the property 26.1 ! 0 we conclude that at most [] of the 6i can be negative

i ([x] is the greatest integer ' x). We can thus describe 6 in terms of

the negative elements of 6.

Let k = [n/21, p = (pl,...,pk) be a k-dimensional vector, and k'(3)

be the number of negative elements of K. With every we shall associate

-a unique vector p(8) that has the following properties:
a) 0 <p1l p < ..2 -Pk •

b) if pi 4 0, then pl < pi
1(3.1

c) P' P2  Pk-k:( =-0.

d) 6, = -1 if and only ifp = i for some J. ZT
i j

Property (d) establishes the relationship for identifying 6 given p(l),

i.e., p(g) is a list of the indices of the negative elements of 8. The

* upiqueness of p(S) is established by properties of (a), (b) and (c). For-

notational convenience, we shall use. the notation p for p(g).

Example 2: For n = 5 k = 2 some examples of associated p are

6' = (1, 1, 1,1, 1) p = (0,0O)

°:• • (-I lI, I I)p = (0, 1)

6 -- (1, -1, 1, -1, 1) p ( (2, 4)

• :z_
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The p values introduce a vector partial ordering where p > p if and

only if pi - P for all i. If strict inequality must hold in at least one

component we write p > p'. This partial ordering !s important with res-

pect to the indicator function r(.,.); thus, in order to maintain notational

consistency, we define a function H(p;v) as follows:

Definition: H(p;v) = r(v,8) where p is the vector associated with 6.

Definition: Two vectors p < p* are adjaent if P = p* for J i and
4i J

pt* pi.+].

We can now e sablish an 1 raNmrtant monotonici.y relation -on the iunct•on ,•1.

Theorem 2: If it pl then H(p;v) ŽH(p' ;v) for b > 0 and H(p;v) <f(p';v) for

b <0.

Proof: Consider p and p* such that p < p* and p* is adjacent to p. Let -

= p + 1. The condition p <p* and property (a) of (3.1)

SPi + 1 for any j since etheruiseothe number of non-zero values p*

would be one less than that of p by property (b) of (3.1). We also note

that H(p;v) > H(p*;v) if and only if

n n
Zt.(p)v.> t: t(p*)vt. Lt pi q Then if q =0, we have

tffl t-

n n
x E lt(P*)a -" a1 + ( p 8t(p)a

t=l t=2

and

n n
L r 6t(p)at = a+ t(.)a
t=l t=2

Since a1 , 0, then H(p;v) > H(p*;v) if . > 0 i.e., b > 0 and H(p;v) < H(p*;v)

if < (0 i.e., b <0.

Now if q 4 0 then

n
7, 5t(P*)at 6 £ " - ( a) -

t=l ttq,q+l 6 t(P)at- aq )

and
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n
S1 E (P)a = X E 85(p)at +X(a a)

Since aq+l - a 0 by assumption then H(p; v) 2 H(p*; v) if > 0ql q

i.e. b >0 and H(p; v) :9H(p*, v) if X< 0 i.e. b:50.

We now need to show that for any p I p', pt can be reached by a

path through adjacent vectors. Let Pk = q and p• q + r. Then let

p =p and pOp ig ... !PT where pi = p I+l for i =,...,r
ik i

and p. = pj for j 0 k. This establishes montonicity of H on p0 through

P. by the above proof on adjacent vectors p and . Also, p < p' We now

take index k-l and perform the same operation and continue with index k-2, k-3,

0 1 1
.., 1 and thus have p <<p' <... <p = p' where p and p differ by

only one element. Thus, the monotonicity property is preserved and the theofem

is proved.

Theorem 2 provides the basis for calculating the r(v, 6) by a

search algorithm. Note that by the theorem one has only to calculate the

vectors p iwhere the function ft changes value. Thus, if H(p) - 1 and

H(p*) = 0 with p and p'. ad-jacent and" b > 0, we have H(p') = 1 for

p' <p and 1(p') = 0 or--i for p' > p*, Thus, if we describe

the set of p where R changes values we cowpletely describe the function r

and thus the equivalence class in which (a,b) exists. Towards this end,

we define the following sets that characterize these points and thus,

the equivalence class.
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If b 0 then

P+= P H(p;v) = 1 and H(p';v) 0 or -1, pt :p)

pO+= fpIH(p;v) = 0 or -1 and H(p';v) =+1 for p' > p)

p0 = p H(p;v) = 0 or +1 hndI H(p';v) = -1 for p' < p)

and P = fpH(p;v) =-I and H(p';V) = 0 or 1, pt >p

and if b >0 then

P = (pIH(p;v) = I and H(p';v) = 0 or 1, p' 2 p)

P = f PIH(p;v) = 0 or -1 and R(p';v) =f+1 p' < p)

p = (p H(p;v) = 0 or +1 and H(p';v) -1 i p' > P)

and P = pIH(p;v) =-I and H(p';v) = 0 or 1 p' < p)

From Lemma 2, the sets P and P provide characterizatiod of the feas-

ible points as follows:

a) 1 /29 and -1/26 are both feasible if and only if b < 0 and

for some p' • P" and qom p! E P p+ * <p(8) _<P"V" (3.2a)

b) 1/26 is feasible and -1/26 is infeasible if and only if either

1) b >0 and for some p' P+ p(g) < p, (3.2b)

or

2) b <0 and for some p' E P- p(3) Pt

c) WS25 is infeasible and -1/26 is feasible if and only if either

1) b > 0 and for some p' E P- p(() > pe (3.2c)

or

2) b <O0andfor somiep' E P+ PS '
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d) 1/23 and -1/29 are both infeasible if and only if b > 0 and for some

pl E P+ and p" E P"

p' _ p(d) p". (3.2d)

The sets P0 and P0 are used in the algorithm of the next section to de-

termine P+ and P and will be used to generate linear constraints des-

cribiag the appropriate equivalence class in Seat.on 5 ..

Example 3: Consider the constraint

2x + 4x 2 + 5x + 7x + 8x a -4
1 2 3 4 5

There are 16 possible vectors p. The pole is v = -5/16(2, 4, 5,-7, 8)

and the values of H are as follows:

p 6(p)v H(p, v) p 8 (p)V H(p, v)
___ 20

00 65 -1 14 89 0
88

01 -1 1 0
45 20

02 8 -1 23 "8 0

40 10
03 -4 -1 24 088

30 5
04 --- - 1 25 8- 0

05 25 -1 34 8 0

12 85 -1 35 0 08

30 1013 8 -1 45 8 0

Now we observe that H(0, 5;v) = -1 implies H(0, t ;v) =-1 for R

t =0,1...,5 and H(1,5;v) =0 implies H(j, 5;v) =0, or 1 for

j 1, 2, 3, 4, and since H(4,5; v) = 0 then these are all zero. Since

H(1,4; v) = 0 and H(4, 5; v) = 0 then H(1, 5; v) = 0 and we can classify
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all of the values by H(0,5) = -1, H(1,3) = -Hl 1(1$4) 0 and H(2,3) 0.

Alternatively, we have P" = f(,5), (1,3)], P0- ((1,4),(2,3)1, P

P 0. 7

In the next section we describe an algorithm for finding the sets

P.

I

N-_

IN
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4. An Algorithm

In this section we present a method for determining the sets P

P +, P0- and P . The method determines elements in one set and then

insures that all adjacent elements are dominated (in a partial ordered

sense) by the elements of one of the sets. In the algorithm, we shall

be interested in those adjacent vectois that are either greater than or

less than a particular vector. Towards this end we use the following

notation. The vectors adjacent to p' will be denoted as p4(J) J ,
and p;(j) 3 = 1,...,n; where pl(j) < p' for all 1 and p'(j) Z p' for

all J. Thus, the p4(j) are the adjacent vectors to pl that are less

than e in partial ordering and pl(j) are the adjacent vectors that are

greater than pt.

In addition, since the monotonicity of H(p;v) is reversed for rever-

sal of the sign of b the algorithm is expressed for b > 0 with changes

for b <•0 designated in brackets. Finally, since we are constructing

sets, we use + and - to denote the additidn and subtraction of elements

from sets.
+ 0+ - + 01- 0-

Step O: P+ =P = P =0. T =T =T =T =0.

Step 1.: Initial Search: Search an ordered chain from p (0009 9..0) to

p = (pl"... qn-n), where p1 = n-k-I if n is odd and p,7 1 if n is even. Let

p* be the maximum element such that H(p*,v) = 1 [H(p*,v) =-"-l and p"* be

the minimum element such that H(10**,v) = -I [H(p**,v) =+1. -Let T+ =

[T = [p*1] and T_ = p**} [T+ = [p**]].

Remark: It is possible that p* and p** may not exist. In this case, the K

appropriate set is left null. While any ordered chain may be used, a
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convenient one is (00,...Oj) j -0,1,...,n ; (000,...,O,j,n) j l,...,n-1

(000,...,O,J,n-l,n) j = l,...,n-2 , etc.

Step 2: If T+ = 0 go to Step 3; otherwise, select any p' E T+ and T

2a: If p' < p [p!> p] for any p E 1+, go to Step 2; otherwise,

j = 1 go to 2b.

2b: If H(0j'(j),v) 1.[1~1(pj(j);v) =1,let p' g 2((i )]

go to 2a;

otherwise, $ = j + I and go to 2c.

2c: If j > n; [i > n'] go to 2d; otherwise, go to 2b.

2d: P+ =+ + +p'], TO+ To= + £4(p)2 + . + n)

[T = T + [p'(l)+ + + [p0(n,)]]. Go to 2.

Step 3: IfT = 0 , go to step 4.

Otherwise, salect any p' E T0 + and TO+ =T0t -fp9].

3a: If p' > p fp' < p] for any p E P , go to step 3.

Otherwise, j = 1, go to 3b.

3b: If H(p!(j)-v) - 0 or -l[H(p'(j);v) = 0 or -1] let p' =

P1(j)[p' = p2 (j)] go to 3a; Otherwise, j = j + 1 and go to 3c.

3c: If j > nf [j > n2] go to 3d;

Otherwise, go to 3b.
3d + 0o O+ p,,T=T+ + 'p[1) + ... + rp'(n')]

3d: P%= P0 + (p') , + (p,"(1)) + Lp 1 1 J')

T -- T++ f•(1))+ ... + (p(n.))]. Go to 2.2

Remark: Upon entering step 4 we have determined the sets P+ and pO+.

Step 4 and 5 are analogous to Step 2 and 3 and determine P- and P0 -

Step 4: If T 0, go to Step 5; Otherwise, select any p' E T" and

T-T -T p']

_7 --
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4a: If P' P p [p1 p) for any p E P, go to Step 4; Otherwise,

j = 1, go to 4b.

4b: If H(p•(j);v) = -1 [H(p2(j),v) -1] let p' = p1(j) [p' =p•(j)]

go to 4a; Otherwise, j = j + I and go to 4c.

4c: If j > n1' [j > nn] go to 4d; Otherwise, go to 4b.

4d: P = + T T + (p'(1)) + + [Pl(nl)] [T

T0 + fp2(1) + . +P2(n2)11. Go to 4.
0- - oftStep 5: If T = 0 stop; Otherwise, select any p' E T and let T

0- ii
5a: If p' <p [p' > p] for any p E P0-, go to Step 5: Otherwise,

j=1. Go to 5b.
5b: If H(p2(j);v) Or +1 [H(n );v) = 0 or +11, let p' = p1(J)

2A
[p' = P,(J)], Go to 5a; Otherwise, j = j + I and go to 5c. -S5c: If j > 11j n

-f n; '] > go to 2d; Otherwise go to 5b. A

5d: -+ T- = T') + ... + f '(n')) (T"

T + p(1)) +.-. +, (pj'(n'). Go to 4.

In the next section, we discuss a possible application of equivalence

classes to determine a "best" constraint for the equivalence classes.

SgU
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5. Generating Constraints from Equivalence Classes

Let us now suppose that we have an equivalence class as represented

by the sets P and P. A question then arises as to what

constraint(s) should we use to represent this equivalence class and how

can they be obtained. We represent our new constraint as

OlxI + 52x2 + ""+ $nxn >0"

Since H(p;v) is a function after both rotation and permutation of the

axis have been eliminated we have the additional conditions

0- <o_ 1 .. -" -< O

In addition, we also know that the class is determined by the sets P

and P of the function H(p;v). We therefore, constru:L a set

of linear constraints using these vets and P0 and P0 I.

From the sets P , P P and P and (3.2) we have the fLllowing

conditions:

If b < 0 then

-l/26(p)B < 0 1/2 for p E P" (5.1a)

1/28(p)0 < -0 1/2 for p E P+ (5.1b)-1/28(p)o _> 00 for p E PO0- (5.1c)

/28(p)• > ofor p E PO (5.1d)

and if b > 0 then

-I/28(p)O > 10 for p E P (5.1e)

1/26(p)o_> 0O for p E P+ (5.1f)

-_/26(P)D < 0O - 1/2 for P E P0  (5.1g)

1 /28(p) 0 < - 1/2 for p E P0+- (5.1h)
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These conditions come directly from Leawna 2. We note that P and

0-P are those points that are adjacent in the sen se that if b < 0, -1/26(p)

is feasible for p E P while -1/26(p) is infeasible 'for p E ,' This

fact is reflected in statements(5.1c) and (5.1a). We use 0"0 1/2 for

infeasibility since this translates back to I- (i.e., integtr r.h.s.)

indicating infeasibility in the x' (zero-one) space. The linear con-

straints (5.1) have the property that all • = 0 satisfying

them belong to the same equivalence class and any 0 that does not satisfy

these constraints does not belong ta.the same equivalence class

as the constraint (ax > b) from which the sets P%,P" were derived.

The criteria of choosing a "best" constraint from the set of solu-

tions to the linear constraints will of course depend on the definition

of the term "best". We propose that one meaningful definitioa is that

0 provides a best constraint if the member of binding (pquality) con-

straints for the defining linear inequalities (5.1) is as large as

possible. From linear programming theory we know that these conditions

corresponds to generating basic feasible solutions for the constraints

(5.1), where the number of non-basic slacks is as large as possible.

This immediately implies that there may be several "best" constraints

since there may be several such basic solutions. However, they all

possess the property that a slight pertubation of a coefficient either

makes one of the defining equalities non-binding or makes 0 no longer

satisfying the constraint set. It should also be noted that there are

n+l variables in (5.1). While this may seem disconcerting

since we need only n points to determine a hyperplane in n space, it is a

result of our definition of an infesible point as being at least 1 unit
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length away from the constraint in terms of the right-hand side. One

may invision this process as choosing n points to determine the hyper-

plane and then one additional point so that a displacement of the hyper-

plane by one unit (in the x' space) will pass through an infeasible point,

see (5.1a,b,g or h).

Remark: V

We note that the constraint (5.1) can be translated back to the x* space

since xi = -1/2 implies x! = 0 and x. = 1/2 implies x' = 1. Since this
2. 2

reduces the number of non-zero coefficients in the constraint set pro-

duced, we propose that this should be used.

Example 4:

Let us now consider the constraint of Example 3. In that oxample

we had P = p = 0, and P = [(0,5), (1,3)] and p- = [(l,4),(2,3)].

The constraints from (5.1) are thus,

•1 3 I•_8.0"

01 + 04 • •(5.2)

13-4 - 5 _

The first constraint comes from the fact that p = (0,5) implies = (11,1,

1,-l) and since -ý/2i is infeasible, then' . , 2 x X 1= 0

is infeasible. The other constraints are derived similarly.

We also note that we can change variables and eliminate the con-
straints 0< 1 < 2 < 3 <• 4 <S 5 " Let yj = 0! and y, = •i - 0i-1

for i > 2 then yi > 0 implies Ai > 5i thus, (5.2) reduces to finding a
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solution to

Y1 + y2 + Y3 + Y4 + Y5 -5 "01

2y, + Y2 + Y3 sool

2y, + Y2 + Y3 + Y4 > of

2y, +2Y 2 + Y3  > ot

Y Yi 0

Solving this set of constraints we find that y, 1, Y2 = 1Y Y3  0,

•Y4 - 1, Y5 = 0, 0! = 4 is a basic feasible solution (and the only[0
basic feasible solution). This yields the constraint x' + 2x2' + 2*'

3x• + 3x' > 4. It is easy to check that this is from the same equiva-

lence class as the original constraint.

Remarks: 1) The equations (5.1) indicate that the flexibility of

"moving" constraints and maintaining the same feasible vertices of the

hypercube is dependent not only on keeping certain vertices feasible

i.e., equations (5.1c), (5.1d), (5.1e) and (5.1f) but also on keeping

certain vertices infeasible, i.e., equations (5.1a): (5.1b), (5.1g)

and (5.1h).

2) One should not inaerprete the constraint generation of this

section as being the only or even the main application of theory of con-

straint equivalence classes. In [5], the concept of equivalence classes

is directly applied to a special class of 0-1 programming problems re-

sulting in not only the optimal solution but direct sensitivity analysis

on the changes in the objective function. I
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